EVOGENIO® - Evolutionäre Kunst
Dr. Günter Bachelier -
The first Evolutionary Art processes (1995--2003)

Population and individuals
Although most conventional evolutionary art approaches resort to an
expression-based image representation, all the individuals in my
evolutionary art processes are bitmap images. The population is simply
a
set of such individuals i.e. it has no other internal structure such as
a graph. In contrast to expression-based representations, I have
named this approach "data-based" evolutionary art. It is possible to
use
the whole range of concepts that have been implemented in graphic file
format, such as alpha channels and layers. File formats using
meta-information (commentary, IPTC-Header, XML tags, ...) can be
used directly as image individuals, since the fitness value can
be
saved as a kind of meta-information in the file.The seeding operation, i.e. the creation of the first population, is an important part of my approach. Typically, in expression-based approaches, the individuals of the first population are created through the random generation of the corresponding expression trees. A random initialization in the case of data-based evolutionary art is not reasonable because such an image would not have any structures. It is more efficient and effective to start with images from outside an evolutionary process which have already satisfied to some extent the aesthetic preferences of the artist.
Evaluation and Selection
After the initialization and after the generation of offspring, the
individuals are evaluated. In most evolutionary algorithms this is done
with a fitness function. However, in the case of interactive
evolutionary art, the quality of an individual reflects the aesthetic
preference of the artist who is evaluating the image individuals. In my
evolutionary art processes there is no explicit fitness function,
therefore this is an interactive evolution approach, requiring input
from an external source, the artist. A binary evaluation is applied as
strategy to select the individuals and parents for the next generation.
My evolutionary art process depends solely on my aesthetic judgments,
images that do not satisfy my aesthetic needs are not selected and are
deleted at a later stage.Reproduction
Reproduction is the operation by which new individuals
(offspring) are produced from the genetic code of one or more
mature individuals (parents). It is necessary to define recombination
and mutation operators suitable for data-based evolutionary art.
If we use bitmap images as individuals, the interpretation of
reproduction with the two components (recombination and mutation) is
not
that obvious, but it is clear that the interpretation is different from
expression-based evolutionary art. My solution, in 1995, was to apply
some image processing functions as reproduction operators and to use
random but constrained parameters of such functions so as to introduce
variations in the next generation.
Fig. 1: Recombination and mutation in the first evolutionary art processes

Recombination
One possible definition of recombination, used in my art process, is an
analogy to the crossover operations in genetic algorithms, or to the
discrete recombination operator in evolutionary strategies. Segments of
one parent image are selected which, in turn, build an offspring image
with the complementary parts of the second image. The concept through
which this is achieved is called Regions-of-interest (ROIs), i.e.,
possible overlapping segments of an image defined by the artist.A simple reproduction strategy that was used first selects at random two parents from the image population (see fig. 1). One of them is selected randomly as the primary parent who is copied to one layer of the offspring individual. Then ROIs of the secondary parent are selected randomly and they are masked with non-sharp edges and later copied to a higher layer of the offspring.
This reproduction strategy can be generalized to multi-sexual reproduction if the offspring obtain their genetic material (image components) from more than two parents, i.e. a second, third, ... parent inserts their selected ROIs in the copied primary image.
Mutation
Copying images and image parts in an offspring individual is the
recombination part of the reproduction process. Additional variation
(mutation) is introduced by transforming the transmitted regions by
means of image processing operations with randomized parameters
within certain constraints. The primary image is not just copied
but also undergoes transformations. In most cases, a RST-transformation
(Rotation-Scaling-Translation) was used i.e., the image of the primary
parent and the ROIs are rotated by an angle between 0 and 360 degrees,
they are scaled by a scaling factor, e.g. between 0.8 and 2.4, and the
result is moved in the x and y direction.After recombination with mutation, the parents and offspring build an interim population and the elements from this population are evaluated, i.e., the artist decides if the images are compatible with his aesthetic preferences. The images that survive this evaluation are selected for the next generation.